Nonlinear Fractional Jaulent-Miodek and Whitham-Broer-Kaup Equations within Sumudu Transform
نویسندگان
چکیده
منابع مشابه
Nonlinear Fractional Jaulent-Miodek and Whitham-Broer-Kaup Equations within Sumudu Transform
and Applied Analysis 3 by considering a general fractional nonlinear nonhomogeneous partial differential equation with the initial condition of the following form: D α t U (x, t) = L (U (x, t)) + N (U (x, t)) + f (x, t) , α > 0, (13) subject to the initial condition D k 0 U (x, 0) = gk, (k = 0, . . . , n − 1) , D n 0 U (x, 0) = 0, n = [α] , (14) where D t denotes without loss of generality the ...
متن کاملOn Fractional Coupled Whitham-broer-kaup Equations
ABDELOUAHAB KADEM1, DUMITRU BALEANU2,* 1L.M.F.N Mathematics Department, University of Setif, Algeria Email: [email protected] 2Department of Mathematics and Computer Sciences, Faculty of Arts and Sciences, Çankaya University06530, Ankara, Turkey ∗On leave of absence from Institute of Space Sciences, P.O.BOX, MG-23, RO-077125, Magurele-Bucharest, Romania Emails: [email protected], balea...
متن کاملOn Whitham-Broer-Kaup Equations
In this paper, we apply and compare modified Variational Iteration Methods (VIMAP) to find travelling wave solutions of Whitham-Broer-Kaup (WBK) equations. The proposed modifications are made by introducing Adomian’s and He’s polynomials in the correction functional of the VIM. The use of Lagrange multiplier coupled with He’s polynomials explicitly reveal a clear edge over the coupling with Ado...
متن کاملApproximate Analytical Solutions of Time Fractional Whitham-Broer-Kaup Equations by a Residual Power Series Method
In this paper, a new analytic iterative technique, called the residual power series method (RPSM), is applied to time fractional Whitham–Broer–Kaup equations. The explicit approximate traveling solutions are obtained by using this method. The efficiency and accuracy of the present method is demonstrated by two aspects. One is analyzing the approximate solutions graphically. The other is compari...
متن کاملBroer-Kaup-Kupershmidt Equations
and Applied Analysis 3 (2) If 0 < g < g0, we get a solitary wave solution u6 ( x, y, t ) c (√ 2 α − 1 β cosh θ ( x y − ct )) α − 1 ( 1 β − cosh 2θ ( x y − ct )) α ( −1 α β − α − 1 cosh 2θ ( x y − ct )) , 2.4 and two blow-up solutions u7± ( x, y, t ) c ( α ( 2 β ) − 2 − 2 α − 1 cosh θ ( x y − ct ) ± β 3/2 coth θ/2 ( x y − ct )) 2α ( −1 α β − α − 1 cosh θ ( x y − ct )) , 2.5 where β 6 − 6α α2 and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Abstract and Applied Analysis
سال: 2013
ISSN: 1085-3375,1687-0409
DOI: 10.1155/2013/160681